Response to Non-Floating Oils in California

Annie Nelson, Senior Environmental Scientist

Prevention First – September 26, 2018

A special meeting of the TAC November 15, 2017

- TAC members
- **USCG**
- NOAA
- **EPA**
- -CCC

- CEC
- OSPR
- **BCDC**
- T&T Marine Salvage
- SF Baykeeper

SPEAKERS:

- Gordan Schremp, CA Energy Commission
- Jordan Stout, National Oceanic and Atmospheric Administration (NOAA)
- Chris Barker, NOAA
- Jacqui Michel, Research Planning, Inc.

- Kathleen Jennings, Office of Spill Prevention and Response (OSPR)
- April DaSilva, OSPR
- Kurt Hansen, US Coast Guard
- Jim Elliott, T&T Marine Salvage

QUESTIONS:

- What might be spilled?
- Where will it go?
- ■What might get hit?
- ► How will it hurt?
- What can we do about it?

What might be spilled?

Heavy oils ARE transported within CA.

Tracking them is difficult.

Heavy crudes are mixed into blends.

Light oils can become NFO.

Where will it go?

- Modeling NFOs is much more difficult.
- Fate and Transport
 - Density, viscosity, and specific gravity
 - Droplet size
 - Weathering
 - Evaporation and dissolution
 - Currents and turbulence

Where will it go?

Detecting submerged oil:

- Acoustic sensors
- ► Fluorometry
- Optical scattering
- Induced polarization
- Water column sampling

Where will it go?

Detecting sunken oil:

- **■**Sonar
- Visualization
- Sorbents
- Bottom Sampling
- Underwater Laser Fluorescence
- Divers

What will it hit?

- Microhabitats
 - **■** Riffles
 - Pools

- → Highest risk
 - Demersal fishes
 - Benthic organisms

Mitigate impacts of upstream ops

How will it hurt?

- Chronic
 - Detection and recovery are difficult.
 - Weathering is slower, increasing persistence.
- Acute
 - Smothering
 - Coating

What can we do about it?

Containment

- Bottom-half curtain for shallow depths
- ► Full-height curtain for low energy environments
- **■** Bottom filter fence
- Berms and trenching
- Natural collection areas

Bottom Half Curtain (shallow depths)

Bottom Half Curtain

Bottom Filter Fence

What can we do about it?

Recovery

- Suction dredges (≤ 40' depth)
- Excavators (≤ 20' depth)
- Manual recovery
- Refloating agitation or air bubbles

Other limitations

- Decanting
- Waste Management
- Time

CONCLUSIONS

- NFO spills are more challenging than floating spills.
- NFO spills are a low risk.
- There is room for improvement.

CONCLUSIONS

What we CAN do:

- Tighter regulations
- Improved shipment data
- Responder training
- Response exercises.

CONCLUSIONS

Data gaps

- Few spill responsesto draw informationfrom
- Chemical assaysnot immediatelyavailable
- Highest risk locations planning

MORE INFORMATION

https://www.wildlife.ca.gov/OSPR/Public-Meetings/Technical-Advisory-Committee/Non-Floating-Oils

AGENDA – links to PowerPoint presentations

SUMMARY REPORT – one-page summaries

WORKSHOP VIDEOS - link to YouTube

